

尜SLR

Technical Appendix 15.1: Carbon Calculator

Aultmore Wind Farm Redesign

Vattenfall Wind Power Limited

Prepared by: SLR Consulting Limited 4/5 Lochside View, Edinburgh Park, Edinburgh, EH12 9DH

SLR Project No.: 405.03640.00016

4 December 2023

Revision: 02

Making Sustainability Happen

Revision	Date	Prepared By	Checked By	Authorised By
0	30 October 2023	R. Watson	A. Huntridge	T. Doggett
1	8 November 2023	R. Watson	A. Huntridge	T. Doggett
3	4 December 2023	R. Watson	A. Huntridge	T. Doggett
	Click to enter a date.			
	Click to enter a date.			

Revision Record

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with Vattenfall Wind Power Limited (the Applicant) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

Basi	s of Report	i
1.0	Introduction	.3
2.0	Context	4
3.0	Input Data	.5
4.0	Results	.7
5.0	Conclusions	.8
6.0	References	9

Annex A: Carbon Balance Inputs and Results

1.0 Introduction

SLR has been commissioned by Vattenfall Wind Power Limited (The Applicant) to calculate the carbon pay-back period for the proposed Aultmore Wind Farm Redesign (the 'proposed development') using the Scottish Government Carbon Calculator Tool¹ in accordance with the associated guidance². The 'Site' refers to all land within the red-line boundary, as displayed in **Figure 1.1** of the EIA Report.

The Site is located within Moray Council in the northeast of Scotland, approximately 6km north of Keith and 7km south of Buckie. The Site is currently an active commercial forestry area with ongoing harvesting and replanting operations.

The Carbon Calculator Tool has been developed by the Scottish Government to support the process of determining the carbon pay-back period for wind farm developments in Scotland. The carbon payback period is derived by comparing the carbon costs of wind farm developments (particularly during construction) with the carbon savings likely to be achieved through their operation.

The Carbon Calculator Tool v1.7.0 uses methods given in Nayak et al, 2008 (<u>http://www.scotland.gov.uk/Publications/2008/06/25114657/0</u>) and revised equations for GHG emissions (Nayak, D.R., Miller, D., Nolan, A., Smith, P. and Smith, J.U., 2010 & 2011, and Wind Farm and Carbon Savings – Technical Note v.2 2.10.0. Input Parameters).

To calculate the pay-back period, the Scottish Government's Carbon Calculator Tool considers the following carbon saving and carbon loss parameters, as shown in Annex A:

- Carbon emissions savings, based on emissions from different power sources;
- Carbon saving due to improvement of habitat;
- Loss of carbon due to production, transportation, erection, operation and decommissioning of the wind farm;
- Loss of carbon from backup power generation;
- Loss of carbon-fixing potential of peatland;
- Loss and/or saving of carbon stored in peatland (by peat removal or changes in drainage); and
- Loss and/or saving of carbon-fixing potential as a result of forestry clearance.

¹ Scottish Government Wind Farm Developments on Peat Land: Carbon Calculator Tool v1.7.0 <u>https://informatics</u>.sepa.org.uk/CarbonCalculator/

² Calculating Carbon Savings from Wind Farms on Scottish Peatlands – A New Approach (Nayak et al., 2008; Nayak et al., 2010 and Smith et al., 2011)

2.0 Context

By 2030, the Scottish Government aims to have reduced greenhouse gas emissions by at least 75% compared to 1990 levels and generate 50% of Scotland's overall energy consumption from renewable sources, with aims to have decarbonised Scotland's energy system and economy completely by 2050.

Large scale wind farm development in Scotland has raised concerns about the reliability of methods used to calculate the time taken for these proposals to reduce greenhouse gas emissions, largely due to the potential siting of wind farms on peatland which represent large stores of carbon. The implication for carbon emissions is therefore a factor that should be included in the consideration of proposed wind farm development.

Applications for wind farms (or extensions of wind farms) submitted under Section 36 of the Electricity Act (with a generation capacity exceeding 50MW) are screened to establish whether they are on deep peat sites (i.e. peat depth greater than 0.5 metres) and where loss or disturbance to peat could occur. Where development does occur on deep peat sites applicants are expected to use the Carbon Calculator to determine the pay-back period of the proposal and submit this with the Section 36 application.

3.0 Input Data

The input data is presented within Annex A of this report. However, if several parameters are varied together, this can have the effect of 'cancelling out' a single parameter change.

For this reason, the approach for this assessment has been to include 'maximum values' as those values which would result in the longest (maximum) payback period; and 'minimum values' as those values which would result in the shortest (minimum) payback period. The expected value is based on the most realistic option for the proposed development.

The calculation spreadsheet within the Carbon Calculator Tool (online version reference number 92GI-M8YX-0BR7 v2) allows a range of data to be input in order to utilise expected, minimum and maximum values, where relevant and applicable.

The data inputs for the online calculator tool have been extracted from the sources listed below:

- Aultmore Wind Farm Redesign EIAR Chapter 2: Proposed Development Description;
- Aultmore Wind Farm Redesign EIAR Technical Appendix 10.1: Peat Landslide Hazard Risk Assessment; and
- Aultmore Wind Farm Redesign EIAR Technical Appendix 10.2: Peat Management Plan.

The final turbine choice is not yet finalised but would likely be 6.6 MW. For this reason, the factors which have been used in this assessment include the following:

- The recommended capacity factor within the calculation spreadsheet has been amended to a site-specific value (44.5%).
- The choice of methodology for calculating the emission factors used the 'site-specific methodology' defined within the calculation spreadsheet.
- Default values for carbon content and bulk density of peat have been used for the assessment. The carbon content ranges from 49% to 62% with an expected value of 55.5% used. This reflects a range of values typical of the carbon content anticipated from Scottish Peatlands (Birnie et al 1991³ and Lindsay 2010⁴). Typical bulk density values have been sourced from the Windfarm Carbon Calculator Web Tool, User Guidance. Generic hydrological parameters have been used for average groundwater. A value of 0.3 m has been used as the expected value. A 'minimum' value of 0.05 m has been used to represent areas of intact peat (the higher the water table, the longer the payback period), and a 'maximum' value of 0.2 m has been used to represent areas of eroded peat.
- Smith et al. (2011)⁵, identified the average extent of drainage impact at three sites (Cross Lochs, Farr Windfarm and Exe Head) as ranging from 3 m to 9 m. However, the actual extent of drainage at any given location will be dependent on local site conditions, including underlying substrata and topography. As site specific values are not available, the standard values from 'Windfarm Carbon Calculator Web Tool, User

³ Birnie R.V., Clayton P., Griffiths P., Hulme P.D., Robertson, R.A., Sloane B.D., and S.A. Ward. (1991). Scottish peat resources and their energy potential. Department of Energy

⁴ Lindsay, R. (2010). Peatbogs and Carbon: a critical synthesis. RSPB

⁵ Smith J.U., Graves P., Nayak D.R., Smith P., Perks M., Gardiner B., Miller D., Nolan A., Morrice J., Xenakis S., Waldron S., Drew S. (2011) Carbon implications of windfarms located on peatlands – update of the Scottish Government Carbon Calculator tool. Final Report, RERAD Report CR/2010/05

Guidance' have been used. Therefore, the expected value is 10 m (minimum 5 m, maximum 25 m).

- The most recent values for the three required counterfactual factors provided in the online carbon calculator have been included are: Grid Mix 0.19338 t CO² MWh-1, fuel mix: 0.432 t CO² MWh-1 and coal: 1.002 t CO² MWh-1.
- Infrastructure dimensions, including estimated excavation size for turbine foundations, hardstands and track lengths is outlined in Chapter 2.
- Although none of the borrow pits are sited on peatland, conservatively, each location has been included in the assessment. The final dimensions of each borrow pit have yet to be defined. Average dimensions from the search areas identified have been used, however it is unlikely that actual borrow pits would be as large.
- The assessment is based on a series of average soil depths taken from peat surveys undertaken at the site. Probe locations sited on mineral / organic soils (<0.5 m) are conservatively included within the averages.
- An estimate of the total volume of concrete has been included, based on an anticipated 730 m³ concrete being required for each turbine foundation.
- An area of 153.3ha has been used for the area of plantation forestry to be felled presenting a worst case scenario, notwithstanding that the site being a commercial plantation and that compensatory planting will be required for any felling, resulting in an actual net loss of 0ha.

4.0 Results

The model calculates carbon emissions savings and losses from the various aspects of the model; and also calculates a payback period based on the three counterfactual emission factors, coal-fired plant, normal grid mix (the current grid mix including nuclear and renewables) and fossil fuel (current grid excluding renewables and nuclear) mix. The emission factors are set by the calculator and updated regularly to reflect the UK electricity grid composition.

Table 4-1 demonstrates that the total lifetime net emissions of carbon dioxide due directly to the development are estimated at 166,863 tonnes of CO_2 , with an estimated payback period of 1.3 years when considered against the fossil fuel grid mix. Therefore, the proposed development will produce a reduction in emissions from the electricity grid of around 177,833 tonnes of CO_2 per year compared to the fossil fuel grid mix.

A summary of the anticipated carbon emission savings per and carbon payback of the proposed development are provided in **Table 4.1** and **Table 4.2**.

Table 4-1 Estimate of CO₂ Emission Savings

Wind Farm CO₂ emission saving over…	Exp.	Min.	Max.
coal-fired electricity generation (t CO ₂ /yr)	412,473	407,839	417,108
grid-mix of electricity generation (t CO ₂ /yr))	79,605	78,710	80,499
fossil fuel – mix of electricity generation (t CO ₂ /yr)	177,833	175,835	179,831
Energy output from Wind Farm over lifetime (MWh)	14,407,747	14,245,862	14,569,632

Table 4-2 CO₂ Emissions and Payback Time

Results	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO ₂ _{eq}) (carbon losses minus carbon gains) per annum.	237,689	188,182	323,598
Carbon Payback Time			
coal-fired electricity generation (years)	0.6	0.5	0.8
grid-mix of electricity generation (years)	3.0	2.3	4.1
fossil fuel – mix of electricity generation (years)	1.3	1.0	1.8
Ratio of CO ₂ eq. emissions to power generation (g/kWh)	16.50	12.92	22.72
(Target ratio by 2030 (electricity generation) <50 g/kWh)			

5.0 Conclusions

The calculations of total carbon dioxide emission savings and payback time for the proposed development indicates that the overall payback period will be around 1.3 years (16 months) when compared to the fossil fuel grid mix of electricity generation. This means that the proposed development is anticipated to take just less than a year to repay the carbon exchange to the atmosphere (the CO_2 debt) through construction; the Site would in effect be in a net gain situation following this time period and can then claim to contribute to national emissions reduction objectives thereafter for its remaining operational life.

6.0 References

Carbon Calculator Tool v1.7.0. Available at <u>https://informatics.sepa.org.uk/CarbonCalculator/</u> - accessed March 2023.

Carbon Calculator Tool User Guidance. Available at

https://informatics.sepa.org.uk/CarbonCalculator/assets/Carbon_calculator_User_Guidance.pdf

Calculating Carbon Savings from Wind Farms on Scottish Peatlands - A New Approach, Nayak et al; 2008 and 2010 and Smith et al; 2011. (http://www.gov.scot/Publications/2008/06/25114657/0)

Nayak, D.R., Miller, D., Nolan, A., Smith, P. and Smith, J.U., 2010, Calculating carbon budgets of wind farms on Scottish peatland. Mires and Peat 4: Art. 9. Online. (<u>http://mires-and-peat.net/pages/volumes/map04/map0409.php</u>)

Scottish Peat Resources and their Energy Potential. ETSU B 1204. London: Department of Energy. Birnie R.V., Clayton P., Griffiths P., Hulme P.D., Robertson, R.A., Sloane B.D., and S.A. Ward. (1991).

Peatbogs and Carbon: A Critical Synthesis Lindsey, R. (2010) for RSPB Scotland.

Scottish Natural Heritage (SNH), SEPA, Scottish Government & The James Hutton Institute. (2014). Peat Survey Guidance; Developments on Peatland: Site Surveys.

http://www.gov.scot/Topics/Business-Industry/Energy/Energy-sources/19185/17852-1/CSavings/PSG2011

Scottish Renewables & SEPA. (2012). Developments on Peatland Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste. <u>http://www.scottishrenewables.com/static/uploads/publications/a4_developments_on_peatland.pdf</u>

Scottish Government. 2020. Update to the Climate Change Plan 2018 – 2032 Securing a Green Recovery on a Path to Net Zero. Available at

https://www.gov.scot/binaries/content/documents/govscot/publications/strategyplan/2020/12/securing-green-recovery-path-net-zero-update-climate-change-plan-20182032/documents/update-climate-change-plan-2018-2032-securing-green-recoverypath-net-zero/update-climate-change-plan-2018-2032-securing-green-recovery-path-netzero/govscot%3Adocument/update-climate-change-plan-2018-2032-securing-greenrecovery-path-net-zero.pdf - Accessed March 2023.

Confidentiality: C2 - Internal

Annex A

Carbon Calculator Inputs and Outputs

Aultmore Wind Farm Redesign

Vattenfall Wind Power Limited

SLR Project No.: 405.03640.00016

4 December 2023

Reference: 92GI-M8YX-0BR7 v2

Carbon Calculator v1.7.0 Aultmore Wind Farm Location: 57.610659 -2.921419 Vattenfall Wind Power Ltd

Core input data

Input data	Expected value	Minimum value	Maximum value	Source of data
Windfarm characteristics				
Dimensions				
No. of turbines	16	16	16	Chapter 2 Proposed Development Description
Duration of consent (years)	35	35	35	Chapter 2 Proposed Development Description
Performance				
Power rating of 1 turbine (MW)	6.6	6.6	6.6	Chapter 2 Proposed Development Description
Capacity factor	44.5	44	45	Chapter 2 Proposed Development Description
Backup	_	_	_	
Fraction of output to backup (%) Additional emissions due to reduced thermal efficiency of the reserve	5	5	5	Dale et al 2004
generation (%)	10	10	10	Fixed
Total CO2 emission from turbine life (tCO2 MW ⁻¹) (eg. manufacture, construction, decommissioning)	Calculate wrt installed capacity	Calculate wrt installed capacity	Calculate wrt installed capacity	
Characteristics of peatland before windfarm development				
Type of peatland	Acid bog	Acid bog	Acid bog	TA 10.1 PLHRA
Average annual air temperature at site (°C)	6.75	6	7	TA 10.1 PLHRA
Average depth of peat at site (m)	0.3	0	4.5	TA 10.1 PLHRA
C Content of dry peat (% by weight)	55.5	49	62	Birnie et a l . 1991
Average extent of drainage around drainage features at site (m)	10	5	25	TA 10.1 PLHRA
Average water table depth at site (m)	0.1	0.05	0.2	TA 10.1 PLHRA
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	0.2	0.18	0.22	
Dry soil bulk density (g cm ²)	0.2	0.16	0.22	Lilly et al. 2010
Characteristics of bog plants Time required for regeneration of bog plants after restoration (years)	6	4	8	Conservative Estimate
Carbon accumulation due to C fixation by bog plants in undrained	0.25	0.12	0.31	TA 10.1 PLHRA
peats (tC ha ' yr ') Forestry Plantation Characteristics				
Area of forestry plantation to be felled (ha)	153.3	153	155	Chapter 2 Proposed Development Description
Average rate of carbon sequestration in timber (tC ha ⁻¹ yr ⁻¹)	3.6	2.5	4.7	Scottish Government and SNH Guidance
Counterfactual emission factors				
Coal-fired plant emission factor (t CO2 MWh ⁻¹)	1.002	1.002	1.002	
$C_{1} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^$	0 10229	0 10220	0 10220	
Grid-mix emission factor (t CO2 MWn ⁻)	0.19338	0.19556	0.19336	
Fossil fuel-mix emission factor (t CO2 MWh ⁻¹)	0.432	0.432	0.432	
Borrow pits				
Number of borrow pits	4	4	4	TA 10.2 PMP
Average length of pits (m)	166	80	230	TA 10.2 PMP
Average width of nits (m)	85	60	100	TA 10.2 PMP
Average depth of plas (iii)	0.12	0.06	0.27	TA 10.2 PMP
	0.12	0.00	0.27	17(10.2 T WI
	24200	244.00	24500	TA 40.2 DMD
Total length of access track (m)	24300	24100	24500	TA 10.2 PMP
Existing track length (m)	15900	15800	16000	TA 10.2 PMP
<u>Length of access track that is floating road (m)</u>	0	0	0	TA 10.2 PMP
Floating road width (m)	5	5	5	TA 10.2 PMP
Floating road depth (m)	0	0	0	TA 10.2 PMP
Length of floating road that is drained (m)	0	0	0	TA 10.2 PMP
Average depth of drains associated with floating roads (m)	0	0	0	TA 10.2 PMP
Length of access track that is excavated road (m)	8400	8300	8500	TA 10.2 PMP
Excavated road width (m)	6	5	7	TA 10.2 PMP
Average depth of peat excavated for road (m)	0.31	0.3	0.32	TA 10.2 PMP
Length of access track that is rock filled road (m)	0	0	0	TA 10.2 PMP
Rock filled road width (m)	5	5	5	TA 10.2 PMP
Rock filled road depth (m)	0	0	0	TA 10.2 PMP
Length of rock filled road that is drained (m)	0	0	0	
Average depth of drains associated with rock filled reads (m)	0	0	0	
Average depth of drains associated with fock filled roads (iff)	0	0	0	TA TO.2 PMP
Cable trenches				
Length of any cable trench on peat that does not follow access tracks and is lined with a permeable medium (eg. sand) (m)	0	0	0	Chapter 2 Proposed Development Description
Average depth of peat cut for cable trenches (m)	0	0	0	Chapter 2 Proposed
Additional peat excavated (not already accounted for above)				Development Description
Volume of additional peat excavated (m ³)	14795	14700	14800	TA 10.2 PMP
Area of additional post even stad (m^2)	50350	50300	50400	TA 10.2 PMP
Area or additional pear excevated (m ⁺)	50550	50500	50700	17 10.2 1 101
Peat Landslide Hazard				
Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments	negligible	negligible	negligible	Fixed
Improvement of C sequestration at site by blocking drains, restoration of	of habitat etc			
improvement of degraded bog				Chapter 2 Proposed
Area of degraded bog to be improved (ha)	0.7	0.6	0.8	Development Description

28/11/2023, 14:05	Reference	e: 92GI-M8YX-0BR	.7 v2	
Input data	Expected value	Minimum value	Maximum value	Source of data
Water table depth in degraded bog before improvement (m)	0.3	0.1	0.5	Typical values
Water table depth in degraded bog after improvement (m)	0.1	0.05	0.3	Typical values
Time required for hydrology and habitat of bog to return to its previous state on improvement (years)	10	5	15	Typical values
Period of time when effectiveness of the improvement in degraded bog can be guaranteed (years) Improvement of felled plantation land	20	15	25	Wind farm lifetime minus tim for improvement
Among of falled a largest time to be improved (be)	0	0	0	Chapter 2 Proposed
Area of felled plantation to be improved (ha)	0	0	0	Development Description
Water table depth in felled area before improvement (m)	0	0	0	
Water table depth in felled area after improvement (m)	0	0	0	
Time required for hydrology and habitat of felled plantation to return to its previous state on improvement (years)	10	5	15	
Period of time when effectiveness of the improvement in felled plantation can be guaranteed (years)	20	15	25	
Restoration of peat removed from borrow pits	6.2	6.1	6.2	
Area of borrow pils to be restored (iia)	0.2	0.1	0.5	TA TU.2 PIMP
the restored surface (m)	0.3	0.1	0.5	Typical values
Depth of water table in borrow pit after restoration with respect to the restored surface (m)	0.1	0.05	0.3	Typical values
Time required for hydrology and habitat of borrow pit to return to its previous state on restoration (years)	5	2	10	Typical values
Period of time when effectiveness of the restoration of peat removed from borrow pits can be guaranteed (years)	25	20	28	Wind farm lifetime minus tim for improvement
Early removal of drainage from foundations and hardstanding Water table depth around foundations and hardstanding before restoration (m)	0.3	0.1	0.5	Typical values
Water table depth around foundations and hardstanding after restoration (m)	0.1	0.05	0.3	Typical values
Time to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years)	2	1	5	Typical values
Restoration of site after decomissioning				
Will the hydrology of the site be restored on decommissioning?	No	No	No	
Will you attempt to block any gullies that have formed due to the windfarm?	No	No	No	Currently unspecified
Will you attempt to block all artificial ditches and facilitate rewetting?	Yes	Yes	Yes	Assumed
Will the habitat of the site be restored on decommissioning?	No	No	No	
Will you control grazing on degraded areas?	No	No	No	Currently unspecified
Will you manage areas to favour reintroduction of species	No	No	No	Currently unspecified
Methodology				

Choice of methodology for calculating emission factors

IPCC default

Forestry input data

N/A

Construction input data

Input data	Expected value	Minimum value	Maximum value	Source of data
Turbines	•			
Number of turbines in this area	16	16	16	TA 10.2 PMP
Turbine foundations				
Depth of hole dug when constructing foundations (m)	0.23	0.08	0.77	TA 10.2 PMP
Aproximate geometric shape of whole dug when constructing foundations	Circular	Circular	Circular	TA 10.2 PMP
Diameter at bottom	25	25	25	
Diameter at surface	25	25	25	
Hardstanding				
Depth of hole dug when constructing hardstanding (m)	0.25	0.09	0.51	TA 10.2 PMP
Aproximate geometric shape of whole dug when constructing hardstanding	Rectangular	Rectangular	Rectangular	TA 10.2 PMP
Length at surface	90	90	90	
Width at surface	36	36	36	
Length at bottom	90	90	90	
Width at bottom	36	36	36	
Piling				
Is piling used?	No	No	No	TA 10.2 PMP
Volume of Concrete				
Volume of concrete used (m ³) in the entire area	11700	11600	11800	TA 10.4 BPA

Payback Time and CO₂ emissions • 92GI-M8YX-0BR7 v2

1. Windfarm CO2 emission saving over	Exp.	Min.	Max.
coal-fired electricity generation (t CO2 / yr)	412,473	407,839	417,108
grid-mix of electricity generation (t CO2 / yr)	79,605	78,710	80,499
fossil fuel-mix of electricity generation (t CO2 / yr)	177,833	175,835	179,831
Energy output from windfarm over lifetime (MWh)	14,407,747	14,245,862	14,569,632

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
2. Losses due to turbine life (eg. manufacture, construction, decomissioning)	94,884	94,852	94,915
3. Losses due to backup	69,934	69,934	69,934
4. Lossess due to reduced carbon fixing potential	1,788	502	4,696
5. Losses from soil organic matter	11,737	760	60,540
6. Losses due to DOC & POC leaching	6	0	21
7. Losses due to felling forestry	70,825	49,088	93,492
Total losses of carbon dioxide	249,175	215,136	323,598

8. Total CO2 gains due to improvement of site (t CO2 eq.)	Exp.	Min.	Max.
8a. Change in emissions due to improvement of degraded bogs	-242	0	-554
8b. Change in emissions due to improvement of felled forestry	0	0	0
8c. Change in emissions due to restoration of peat from borrow pits	-4,290	0	-5,667
8d. Change in emissions due to removal of drainage from foundations & hardstanding	-6,953	0	-20,734
Total change in emissions due to improvements	-11,486	0	-26,955

RESULTS	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO2 eq.)	237,689	188,182	323,598
Carbon Payback Time			
coal-fired electricity generation (years)	0.6	0.5	0.8
grid-mix of electricity generation (years)	3.0	2.3	4.1
fossil fuel-mix of electricity generation (years)	1.3	1.0	1.8
Ratio of soil carbon loss to gain by restoration (not used in Scottish applications)	1.02	0.03	No gains!
Ratio of CO2 eq. emissions to power generation (g/kWh) (for info. only)	16.50	12.92	22.72

Making Sustainability Happen